175 research outputs found

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for q≄αd+ÎČq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large ÎČ=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree

    Delay, memory, and messaging tradeoffs in distributed service systems

    Get PDF
    We consider the following distributed service model: jobs with unit mean, exponentially distributed, and independent processing times arrive as a Poisson process of rate λn\lambda n, with 0<λ<10<\lambda<1, and are immediately dispatched by a centralized dispatcher to one of nn First-In-First-Out queues associated with nn identical servers. The dispatcher is endowed with a finite memory, and with the ability to exchange messages with the servers. We propose and study a resource-constrained "pull-based" dispatching policy that involves two parameters: (i) the number of memory bits available at the dispatcher, and (ii) the average rate at which servers communicate with the dispatcher. We establish (using a fluid limit approach) that the asymptotic, as n→∞n\to\infty, expected queueing delay is zero when either (i) the number of memory bits grows logarithmically with nn and the message rate grows superlinearly with nn, or (ii) the number of memory bits grows superlogarithmically with nn and the message rate is at least λn\lambda n. Furthermore, when the number of memory bits grows only logarithmically with nn and the message rate is proportional to nn, we obtain a closed-form expression for the (now positive) asymptotic delay. Finally, we demonstrate an interesting phase transition in the resource-constrained regime where the asymptotic delay is non-zero. In particular, we show that for any given α>0\alpha>0 (no matter how small), if our policy only uses a linear message rate αn\alpha n, the resulting asymptotic delay is upper bounded, uniformly over all λ<1\lambda<1; this is in sharp contrast to the delay obtained when no messages are used (α=0\alpha = 0), which grows as 1/(1−λ)1/(1-\lambda) when λ↑1\lambda\uparrow 1, or when the popular power-of-dd-choices is used, in which the delay grows as log⁥(1/(1−λ))\log(1/(1-\lambda))

    Spatial Mixing and Non-local Markov chains

    Full text link
    We consider spin systems with nearest-neighbor interactions on an nn-vertex dd-dimensional cube of the integer lattice graph Zd\mathbb{Z}^d. We study the effects that exponential decay with distance of spin correlations, specifically the strong spatial mixing condition (SSM), has on the rate of convergence to equilibrium distribution of non-local Markov chains. We prove that SSM implies O(log⁥n)O(\log n) mixing of a block dynamics whose steps can be implemented efficiently. We then develop a methodology, consisting of several new comparison inequalities concerning various block dynamics, that allow us to extend this result to other non-local dynamics. As a first application of our method we prove that, if SSM holds, then the relaxation time (i.e., the inverse spectral gap) of general block dynamics is O(r)O(r), where rr is the number of blocks. A second application of our technology concerns the Swendsen-Wang dynamics for the ferromagnetic Ising and Potts models. We show that SSM implies an O(1)O(1) bound for the relaxation time. As a by-product of this implication we observe that the relaxation time of the Swendsen-Wang dynamics in square boxes of Z2\mathbb{Z}^2 is O(1)O(1) throughout the subcritical regime of the qq-state Potts model, for all q≄2q \ge 2. We also prove that for monotone spin systems SSM implies that the mixing time of systematic scan dynamics is O(log⁥n(log⁥log⁥n)2)O(\log n (\log \log n)^2). Systematic scan dynamics are widely employed in practice but have proved hard to analyze. Our proofs use a variety of techniques for the analysis of Markov chains including coupling, functional analysis and linear algebra

    Statistical Mechanics of Steiner trees

    Get PDF
    The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types

    FPTAS for Weighted Fibonacci Gates and Its Applications

    Full text link
    Fibonacci gate problems have severed as computation primitives to solve other problems by holographic algorithm and play an important role in the dichotomy of exact counting for Holant and CSP frameworks. We generalize them to weighted cases and allow each vertex function to have different parameters, which is a much boarder family and #P-hard for exactly counting. We design a fully polynomial-time approximation scheme (FPTAS) for this generalization by correlation decay technique. This is the first deterministic FPTAS for approximate counting in the general Holant framework without a degree bound. We also formally introduce holographic reduction in the study of approximate counting and these weighted Fibonacci gate problems serve as computation primitives for approximate counting. Under holographic reduction, we obtain FPTAS for other Holant problems and spin problems. One important application is developing an FPTAS for a large range of ferromagnetic two-state spin systems. This is the first deterministic FPTAS in the ferromagnetic range for two-state spin systems without a degree bound. Besides these algorithms, we also develop several new tools and techniques to establish the correlation decay property, which are applicable in other problems

    Bonding mechanism in the nitrides Ti2AlN and TiN: an experimental and theoretical investigation

    Full text link
    The electronic structure of nanolaminate Ti2AlN and TiN thin films has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, N K, Al L1 and Al L2,3 emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole transition matrix elements. Three different types of bond regions are identified; a relatively weak Ti 3d - Al 3p bonding between -1 and -2 eV below the Fermi level, and Ti 3d - N 2p and Ti 3d - N 2s bonding which are deeper in energy observed at -4.8 eV and -15 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states of Al L2,3 emission from Ti2AlN in comparison to pure Al metal is found, which reflects the Ti 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic and crystal structures of Ti2AlN and TiN are discussed in relation to the intercalated Al layers of the former compound and the change of the materials properties in comparison to the isostructural carbides.Comment: 18 pages, 7 figures; http://link.aps.org/doi/10.1103/PhysRevB.76.19512

    Belief Propagation for Min-Cost Network Flow: Convergence and Correctness

    Get PDF
    Distributed, iterative algorithms operating with minimal data structure while performing little computation per iteration are popularly known as message passing in the recent literature. Belief propagation (BP), a prototypical message-passing algorithm, has gained a lot of attention across disciplines, including communications, statistics, signal processing, and machine learning as an attractive, scalable, general-purpose heuristic for a wide class of optimization and statistical inference problems. Despite its empirical success, the theoretical understanding of BP is far from complete. With the goal of advancing the state of art of our understanding of BP, we study the performance of BP in the context of the capacitated minimum-cost network flow problem—a cornerstone in the development of the theory of polynomial-time algorithms for optimization problems and widely used in the practice of operations research. As the main result of this paper, we prove that BP converges to the optimal solution in pseudopolynomial time, provided that the optimal solution of the underlying network flow problem instance is unique and the problem parameters are integral. We further provide a simple modification of the BP to obtain a fully polynomial-time randomized approximation scheme (FPRAS) without requiring uniqueness of the optimal solution. This is the first instance where BP is proved to have fully polynomial running time. Our results thus provide a theoretical justification for the viability of BP as an attractive method to solve an important class of optimization problems.National Science Foundation (U.S.). Career Project (CNS 0546590)Natural Sciences and Engineering Research Council of Canada (NSERC). Postdoctoral FellowshipNational Science Foundation (U.S.). EMT Project (CCF 0829893)National Science Foundation (U.S.). (CMMI-0726733

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by ∑kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating log⁥Z(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error Ï”n\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/Ï”1/\epsilon, and we also provide a lower bound quadratic in 1/Ï”1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/Ï”1/\epsilon and the lower bound is quadratic in 1/Ï”1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    Fermions and Loops on Graphs. II. Monomer-Dimer Model as Series of Determinants

    Full text link
    We continue the discussion of the fermion models on graphs that started in the first paper of the series. Here we introduce a Graphical Gauge Model (GGM) and show that : (a) it can be stated as an average/sum of a determinant defined on the graph over Z2\mathbb{Z}_{2} (binary) gauge field; (b) it is equivalent to the Monomer-Dimer (MD) model on the graph; (c) the partition function of the model allows an explicit expression in terms of a series over disjoint directed cycles, where each term is a product of local contributions along the cycle and the determinant of a matrix defined on the remainder of the graph (excluding the cycle). We also establish a relation between the MD model on the graph and the determinant series, discussed in the first paper, however, considered using simple non-Belief-Propagation choice of the gauge. We conclude with a discussion of possible analytic and algorithmic consequences of these results, as well as related questions and challenges.Comment: 11 pages, 2 figures; misprints correcte

    Fluid Models of Many-server Queues with Abandonment

    Full text link
    We study many-server queues with abandonment in which customers have general service and patience time distributions. The dynamics of the system are modeled using measure- valued processes, to keep track of the residual service and patience times of each customer. Deterministic fluid models are established to provide first-order approximation for this model. The fluid model solution, which is proved to uniquely exists, serves as the fluid limit of the many-server queue, as the number of servers becomes large. Based on the fluid model solution, first-order approximations for various performance quantities are proposed
    • 

    corecore